Słownik KONDENSATOR co to znaczy? Słownik okładkami albo elektrodami k., oddzielonych od siebie.

Czy przydatne?

Co to jest Kondensator

Definicja z ang. CAPACITOR, z niem. CAPACITOR.

Co to znaczy: układ dwóch przewodników, zwanych okładkami albo elektrodami k., oddzielonych od siebie warstwą dielektryka. Po naładowaniu k., na przykład poprzez przyłączenie do zewnętrznego źródła napięcia, na okładkach pojawiają się ładunki Q równe co do wartości, ale przeciwnych znaków. Pomiędzy okładkami k. pojawia się różnica potencjałów U związana z ładunkiem Q zależnością: Pojemność elektryczna C k. zależy od kształtu okładek, pola powierzchni okładek, ich wzajemnej odległości i rodzaju dielektryka znajdującego się pomiędzy okładkami. Miarą pojemności jest relacja ładunku na okładce k. do różnicy potencjałów pomiędzy okładkami. K. może zgromadzić spory ładunek elektryczny przy w miarę niewielkiej różnicy potencjałów pomiędzy okładkami. Ta cecha uzasadnia jego nazwę. Pierwszym k. zastosowanym do "zmagazynowania" ładunku elektrycznego była butelka lejdejska. K. znajdują sporo zastosowań we współczesnej elektrotechnice i elektronice. W różnych odmianach konstrukcyjnych znajdują się w każdym urządzeniu elektronicznym. Na rysunkach przedstawiono przykłady k., których pojemności można łatwo obliczyć: - KONDENSATOR PŁASKI gdzie: S - pole powierzchni okładki [m2], d - odległość pomiędzy okładkami [m], ε0 - przenikalność elektryczna próżni , ε - względna przenikalność elektryczna dielektryka (stała dielektryczna), C - pojemność k. w faradach. - KONDENSATOR CYLINDRYCZNY zbudowany jest z dwóch współosiowych cylindrów o promieniach r i R, o długości l. - KONDENSATOR KULISTY zbudowany jest z dwóch współśrodkowych okładek sferycznych o promieniach r i R. Jeżeli R ∞ , to k. kulisty staje się odosobnionym przewodnikiem kulistym o promieniu r, gdyż elektroda o większym promieniu znajduje się w nieskończoności, a jej potencjał jest równy zeru ( pole elektrostatyczne). Łatwo wykazać, iż wzory na pojemność k. kulistego i cylindrycznego przechodzą we wzór na pojemność k. płaskiego, wtedy gdy odległość pomiędzy okładkami jest mała, czyli spełniony jest warunek: Ładowanie i rozładowanie k. z zewnętrznego źródła napięcia jest powiązane z przepływem prądu, którego natężenie zależy od czasu. Napięcie na okładkach k. także jest zależne od czasu. By znaleźć te zależności można rozpatrzyć obwód przedstawiony na rysunku. Po włączeniu klucza K w pozycję (1), w obwodzie rozpoczyna płynąć prąd elektryczny, związany z ładowaniem k. Stosunkowo przepływu prądu rośnie ładunek na okładkach k., co skutkuje przyrost napięcia pomiędzy okładkami UC. Kiedy napięcie to osiągnie wartość siły elektromotorycznej E, prąd przestanie płynąć. II prawo Kirchhoffa można napisać w formie:E - UC - IR = 0 Podstawiając otrzymuje się równanie: po zróżniczkowaniu względem czasu: albo Całkowanie równania prowadzi do następującego wyniku: gdzie k - stała całkowania. Korzystając z definicji logarytmu, równanie można przepisać w formie: Korzystając z warunku początkowego: ; , można określić stałą K = I0 i napisać zależność natężenia prądu od czasu w formie: Korzystając z warunku początkowego: t = 0; można określic stałą K = I0 i napisć zależność natężenia prądu od czasu w formie: Zależność napięcia od czasu można wyliczyć z II prawa Kirchhoffa: Rozmiar τ = RC nazywa się czasem relaksacji albo stałą czasową obwodu RC. W okresie t = τ = RC natężenie prądu ładowania minimalizuje się do wartości , czyli maleje prawie trzykrotnie. Jeżeli po naładowaniu k. przełączyć klucz K w pozycję (2), to następuje jego rozładowanie. II prawo Kirchhoffa można teraz napisać w formie: -UC - IR = 0 Po podstawieniu i zróżniczkowaniu względem czasu otrzymuje się równanie różniczkowe: Bezwzględna wartość natężenia prądu minimalizuje się z czasem odpowiednio z wykładniczą (eksponencjalną) zależnością: Napięcie na k. także wymienia się wykładniczo (eksponencjalnie): Energię potencjalną pola elektrycznego w naładowanym k. można wyznaczyć obliczając liczba ciepła wydzielonego na oporze w trakcie rozładowania k.: Energię nagromadzoną w k. naładowanym do napięcia U, można wyrazić wzorem

Czym jest KONDENSATOR znaczenie w Słownik fizyka K .